My previous post provides instructions on Getting Started with Data Factory. To borrow a line from Ron White, “I told you that story so I could tell you this one”. If you followed the steps in that post, you have a Data Factory resource. Time to use it. This post describes how to process some data by copying data currently stored in the database to a Blob Storage account. To complete that task, you will need to write some JSON. Please be careful when you do this as writing JSON may involve cursing JSON. Since Jason was in the list of top four male baby names in the US from 1973 – 1982, chances are you may work near someone named Jason when writing JSON, who may think the cursing is directed at him.
Author and Deploy Linked Services
To be able to pass data from a database, a connection needs to be established to a database. That connection is made by creating a Linked Service. In Data Factory, if you create a New data store, a new Linked Service JSON template will be created. After Clicking on the New Data Store Icon, a list of databases will appear. In this example I am going to pick an Azure SQL Database. If I wanted to access a local SQL Server Database, a gateway to connect to it would also be required. The JSON Linked service template will appear under the menu Drafts and will be labeled Draft-1. A copy of the coded is included below.
{"name": "AzureSqlLinkedService",
"properties": {
"type": "AzureSqlDatabase",
"description": "",
"typeProperties": {
"connectionString": "Data Source=tcp:<servername>.database.windows.net,1433;Initial Catalog=<databasename>; UserID=<username>@<servername>;Password=<password>;Integrated Security=False;Encrypt=True;Connect Timeout=30"
}
}
}
If nothing is changed and the Deploy icon at the top of the screen is clicked, a new item AzureSqlLinkedService will appear under Linked services. There will be a circle with an exclamation point next to it as the connection does not contain valid data, but you can deploy it. To get rid of the error, replace all of the information default provided after the colon with valid values, starting with the name, which has been defaulted to AzureSqlLinkedService.The name property dictates what the Linked service will be called and cannot be change the name later. To change the name later, highlight the name of the service click on the Clone, change the name, deploy, highlight the old name, click on the …More text at the top of the screen, select delete, then confirm the deletion the Linked service by clicking on the Yes Button. Conversely, just select a good name before clicking on the Deploy icon. Within the connection string, replace all of the items between < and > with valid values. If there are any errors after deploying, fix the data, click on Deploy and the circle with the exclamation point will go away. Invalid database names are accepted, as long as they are in the right format. If the name is not valid, an error will be received when data factory is run.
Because we need a connection to a database and a Azure Blob, two Linked Services are required, one for each different type. Prior to completing this step, create an Azure Blob storage account by clicking on Add on All Resources. Create the second Linked service, like the first. Click on New data store then select Azure Storage. Using the template for an Azure Blob Storage linked services, I have modified it below adding the “hubName” as it is required
{
"name": "GingerAzureBSLinkedService01",
"properties": {
"description": "Test Azure Blob Storage Account for DF",
"hubName": "GingerDataFactoryTest_hub",
"type": "AzureStorage",
"typeProperties": {
"connectionString": "DefaultEndpointsProtocol=https;AccountName=gingerblobstorage01;AccountKey=**********"
}
}
}
The hub name is the name of your Data Factory resource you created earlier, and the name will be from you storage account. You will need to get the actual Account Key and replace it. Once the JSON is deployed, the value will appear as a line of asterisk again.
Create a Data Factory Dataset
Two datasets representing the data accessed in the two linked services must be written in JSON. Click on …More and select New dataset. Unlike Linked Services, you actually do have an option to create a New dataset as the name is consistent. Creating the JSON for the database is a bit of a pain as you have to define every single column accessed and as well as the datatype for each one. Of course both order and capitalization are important, as they must exactly match what is in the database, or you will get an error after the code is run. You won’t see any errors when you type it. Here is a sample
{
"name": "InputDataSet",
"properties": {
"structure": [
{
"name": "Age",
"type": "Int32"
},
{
"name": "workclass",
"type": "string"
},
{
"name": "education-num",
"type": "Int32"
},
{
"name": "marital-status",
"type": "String"
},
{
"name": "occupation",
"type": "String"
},
{
"name": "relationship",
"type": "String"
},
{
"name": "race",
"type": "String"
},
{
"name": "sex",
"type": "String"
},
{
"name": "hours-per-week",
"type": "Int32"
},
{
"name": "native-country",
"type": "String"
}
],
"published": false,
"type": "AzureSqlTable",
"linkedServiceName": "InputLinkedServiceAzureDB01",
"typeProperties": {
"tableName": "vCensusInfo"
},
"availability": {
"frequency": "Hour",
"interval": 1
}
}
In this sample, I am actually getting data from a view, not a table. Even though all the code references a table, using a view instead works fine. The linked service name does of course represent the Linked service created in the previous step.
Fortunately, it is not necessary to list every column when inserting values to a Blob so the JSON for that is much easier. While it is possible not to enter a file name, if you ever wish to use the data in the blob store later, you will need to create one. This JSON will write a file input.csv to a blob store to the path mlinput01. If this is run twice, the file will be overwritten the second time.
{
"name": "InputDataSetBlob",
"properties": {
"published": false,
"description": "Input Blob Dataset to feed Azure ML",
"type": "AzureBlob",
"linkedServiceName": "AzureBlobStorageLinkedService",
"typeProperties": {
"fileName": "inputdata.csv",
"folderPath": "mlinput01/",
"format": {
"type": "TextFormat",
"columnDelimiter": ","
}
},
"availability": {
"frequency": "Hour",
"interval": 1
},
"external": false,
"policy": {}
}
}
JSON for a Data Factory Pipeline
The last JSON required needs to provide the action, in our example copying from a database to a Azure Blob store. Click on …More and select New pipeline.
The JSON code looks like this
{
"name": "PipelineTemplate",
"properties": {
"description": "<Enter the pipeline description here>",
"activities": [],
"start": "<The start date-time of the duration in which data processing will occur or the data slices will be processed. Example : 2014-05-01T00:00:00Z>",
"end": "<The end date-time of the duration in which data processing will occur or the data slices will be processed. Example: 2014-05-05T00:00:00Z>"
}
}
That JSON looks really simple. Unfortunately, for this to work a lot more JSON is required, especially under the activities
{
"name": "PipelineCopy01",
"properties": {
"activities": [
{
"type": "Copy",
"typeProperties": {
"source": {
"type": "SqlSource"
},
"sink": {
"type": "BlobSink",
"blobWriterAddHeader": true,
"writeBatchSize": 0,
"writeBatchTimeout": "00:00:00"
}
},
"inputs": [
{
"name": "InputDataSet"
}
],
"outputs": [
{
"name": "InputDataSetBlob"
}
],
"policy": {
"timeout": "01:00:00",
"concurrency": 1,
"executionPriorityOrder": "NewestFirst",
"style": "StartOfInterval"
},
"scheduler": {
"frequency": "Hour",
"interval": 1
},
"name": "Copy Activity"
}
],
"start": "2016-08-07T00:01:00Z",
"end": "2016-08-08T00:01:00Z",
"isPaused": false,
"hubName": "GingerDataFactoryTest_hub",
"pipelineMode": "Scheduled"
}
}
Once the JSON has all of the curly braces and commas necessary, it can be deployed without a red circle. Scroll back over to the right to get the the Action menu again and select Diagram. The diagram should appear as shown below.
Ad-Hoc Running Data Factory Pipelines
This job is scheduled to run on the hour, but chances are you want to run it whenever you have the code done, rather than waiting. To run the pipeline, underneath the Contents section, click on the Datasets. A list of datasets will appear. Select the one for the Azure Blob storage output, which in my example is called InputDataSetBlob. Select a value under slices, then click on it and another window will appear on the right. Click on one of the items on that window. Another screen will appear on the right. On this window on the top left corner click on Run. Ideally at this point if your spelling and capitalization all works out, after some duration, the status should say Succeeded. To validate that the transfer actually took place, go to your blob storage account, and you should see the file created. You can even download the file to make sure it actually has data in it. If you don’t change the name, and run it again, the data will be overwritten, and no error will occur, so feel free to run this as much as you like.
Yours Always
Ginger Grant
Data aficionado et SQL Raconteur
Pingback: Copying Data With Data Factory – Curated SQL